

HARMONY

OperationalSimulator

1st September 2021 – ICTR 2021

Tamara Djukic

HARMON Y model

- Shyline jor change in mobility landscape, either from supply or demand side, has a potential impact on transport models.
- Decision support
 systems that reproduce
 emerging mobility
 concepts
- An integration is a straightforward way to model mobility

 HARMONY's operational simulator is an integrated dynamic demand and supply simulator, operating on a shortterm horizon (with-in day simulations).

main purpose lts is the evaluation of the transport network's performance, under loading conditions different (demand) variable and infrastructure and mobility services configurations (supply).

Operational simulator: main components

Unmanned aircraft systems Traffic Management

Agent-based passenger controller

Agent-based freight distribution controller

Energy, emissions and noise models

Operationa I simulator:

High level architectur e

DATA – network geometry

Data for operational simulator

In order to create a realistic simulation environment, the operational simulator requires the following inputs:

Road and Air network geometry:

- Demand: Zoning system, demand data expressed in trips or tours, activity schedules for passengers.
- Traffic control: Data defining the operation of traffic signals and ramp meters.
- Transit operation: Data defining the operation of public transport (e.g. transit routes, stop locations, service schedule).
- Network traffic state and performance: Data defining the behaviour of road elements (e.g. volumes, speeds, travel times).
- Traffic monitoring data: Traffic flow, speed and occupancy data from road detectors.
- Fleet characteristic: Vehicle composition for public transport vehicles, freight and drones.

www.harmony-h2020.eu

Rotterdam use case

Operational simulator: Scenarios and KPIs

Scenarios	KPIs
(Autonomous) Mobility on demand and MaaS (Electric vehicles, demand responsive services, fleet size, charging and parking infrastructure, pricing, routing and rebalancing strategies) Oxfordshire, Athens	 Energy and emissions performance Network travel times Kilometres travelled per vehicle type Vehicle occupancy
Integration of new city logistics concepts (Automated delivery vans, e-cargo bikes, drones) Rotterdam	 Number of deliveries per unit time Total cost of delivery Energy and emissions performance
Crowdshipping for parcel delivery Oxfordshire, Rotterdam	 Kilometres travelled per vehicle type Total cost of delivery Energy and emissions performance

Scope of the model proposed by Oxfordshire in the Harmony project

Operational simulator: Oxfordshire example

Conclusions

- ➤ First application of the operational model will be applied for the assessment of policies in the system related to fleet management for passenger and freight.
- ➤ New generation of multi-agent simulation models for urban passenger and freight planning are part of iteration process with operational simulator to improve reliability of the models.
- Integration of multiresolution supply and fleet controllers with multi-agent demand allows a better impact prediction of the new emerging concepts faced by stakeholders (e.g. logistic segments), and implementation of scenarios for city logistics and DRT services.
- ➤ **Next iterations** of the operational simulators are expected to improve the validity of models.

Thank you!

Dr Tamara Djukic Head of Research Projects tamara.djukic@aimsun.com

