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ABSTRACT1
Latest technological advancements and the rise of the sharing economy have led to the emergence2
of the Mobility as a Service (MaaS) concept. In MaaS systems, service integrators, i.e., MaaS3
Operators, integrate traditional and new mobility services and offer to users seamless travel expe-4
rience through multimodal journey planning, integrated payment, booking and ticketing services.5
The variety of available mobility services in MaaS systems, their inherent service attribute dy-6
namics and the different factors that MaaS users consider for their trip choices render efficient and7
optimal multimodal trip planning a vital problem for MaaS Operators. In contrast to existing work,8
in this paper, we formalize the fully dynamic, multimodal and multicriteria path set computation9
problem in MaaS systems considering simultaneously all the aforementioned system’s particular-10
ities. Specifically, a new generalized dynamic multimodal and multi-attribute network model is11
proposed, which enables the realistic replication of different mobility services’ structural charac-12
teristics as well as modelling a range of static and dynamic service attributes. We further propose13
a new dynamic and multicriteria shortest path algorithm for Pareto path set computation in MaaS14
systems along with heuristics that speed up the multicriteria search. We, finally, test and evaluate15
our modelling and algorithmic framework in a prototypical multimodal network. Initial results16
indicate that our approach enables the computation of diverse optimal and realistic unimodal and17
multimodal trips in reasonable computation time, setting the ground for further exploration into18
practical large-scale implementations.19

20
Keywords: Mobility as a Service; Multimodal; Multicriteria; Shortest Path; Dynamic; Networks;21
Supernetworks22
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1. INTRODUCTION1
It is widely evidenced that in the last few years, Information and Communication technologies have2
transformed transport. New mobility services (e.g. urban air mobility, ride-hailing, e-hailing, ride-3
sharing services, carsharing, bike-sharing, scooters, Demand Responsive Transit, Autonomous4
Mobility) have emerged with the potential to disrupt the current modus operandi in the transport5
sector and contribute towards sustainable mobility (1–3). With this wealth of emerging systems, the6
need of operational integration became apparent leading towards holistic information and demand7
management systems. These advancements combined with the need for seamless multimodality8
and environmental sustainability in urban transport networks have led to the emergence of the Mo-9
bility as a Service (MaaS) concept (4). MaaS is a user-centric, intelligent mobility management10
and distribution system, in which MaaS Operators bring together offerings from multiple mobility11
service providers and offer them to end-users through a digital interface, allowing them to seam-12
lessly plan and pay for mobility (5). The concept of MaaS has received attention by both industrial13
and academic circles, mainly due to its increased potential to alter users’ perceptions towards mo-14
bility, vehicle ownership and usage, as well as users’ daily activity and travel patterns (6, 7). In15
fact, to this day, more and more MaaS schemes are being deployed around the world (4, 8).16

An important service offered by MaaS Operators and, therefore, an integral component of17
a MaaS Operator’s platform is a Journey Planning System (JPS). It is responsible for generating18
on-demand and in real-time trip alternatives, which is usually achieved by employing optimization19
processes that solve variations of the commonly known shortest path problem (9). For a JPS to20
be able to accommodate the MaaS requirements (10), it needs to reflect mainly three character-21
istics: a) design to support the inherent multimodality of MaaS, capturing diverse structural and22
operational characteristics of different mobility services; b) the inherent dynamism of mobility ser-23
vices and traffic conditions, enabling real-time and efficient service attribute updates for planning;24
c) multicriteria travel recommendation functionalities for generating attractive trips for users with25
different preferences. While several research efforts have been made towards the above directions26
(e.g. 9, 11–18), there is still the need to address the fully dynamic multimodal and multicrite-27
ria shortest path problem for MaaS systems integrating private, public transport, on-demand and28
shared services. MaaS network models need to properly represent such services and their dynam-29
ics and enable the computation of optimal multimodal paths, while considering simultaneously trip30
attributes that directly impact travellers’ choices. At the same time, solution algorithms need to31
enable computationally efficient optimal path set generation, that can be used in operation settings,32
for more attractive, accurate and reliable travel recommendations.33

This paper addresses the aforementioned gaps by formulating and proposing a new MaaS34
network model, based on the supernetwork modelling paradigm (19). Although the supernetwork35
modelling approach is not new, there is no explicit description for supernetwork modeling pro-36
cesses and requirements within MaaS Journey planning applications. In addition, we design and37
propose a novel optimization algorithm, based on the paradigm proposed by (11) that enables ef-38
ficient and realistic Pareto set computation for dynamic MaaS systems. We further investigate39
speed-up heuristics for improving its performance. In essence, we build on a modular MaaS plat-40
form system design, as proposed by the authors in (4), that facilitates the above MaaS platform41
requirements. More specifically, this paper contributes to the existing literature in the four follow-42
ing ways:43

1. We explicitly propose and formulate a flexible and generic dynamic, multimodal and44
multi-attribute MaaS network model that captures operational and structural service dy-45
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namics and enables multicriteria trip planning.1
2. We design and propose a new dynamic multicriteria shortest path algorithm and heuristic2

variations for generating realistic Pareto sets in MaaS networks.3
3. We evaluate the proposed modelling and algorithmic framework on a small-sized pro-4

totypical multimodal network.5
4. We openly distribute the codes for the MaaS network formulation, the Mutltimodal6

Dynamic and Multicriteria Shortest Path algorithm and the evaluation metrics.7
The remainder of this paper consists of three sections. Section 2 provides the formulation8

of the problem under investigation, including dedicated sub-sections for the network model, the9
solution algorithm and the acceleration heuristics. Section 3 presents the evaluation of the proposed10
modelling and algorithmic framework in a prototypical multimodal network and the results in terms11
of the algorithms’ computational performance and quality of outputs. Finally, Section 4 provides12
the concluding remarks arising from the work presented in this paper and indicates our next future13
research steps.14

2. DYNAMIC, MULTIMODAL AND MULTI-CRITERIA SHORTEST PATH PROBLEM15
FOR MAAS16
2.1 Dynamic and Multi-attribute MaaS Network Model17
To the best of authors knowledge a generalised dynamic and multimodal network model formu-18
lation for MaaS applications does not exist in literature. In this paper, we define it based on the19
supernetwork modelling paradigm. The network model can be characterised as a Time-dependent,20
Directed, Multi-layer Graph (TDMG). Each layer is either a static or a dynamic directed graph21
representing a certain service. All service layers are connected to the walk layer, through which22
mode transfers and walking are realised. Such a MaaS graph design philosophy allows flexibly23
"plugging in and out" service graphs. Apart from the obvious benefits of extending and quickly24
including emerging modes, this further enables personalized path computations by planning trips25
in "user-specific" graph combinations, based on user preferences and selected MaaS products(20).26

The formulation of the TDMG can be performed incrementally by building each service27
graph (layer) independently. However, there are certain modelling considerations that need to28
be accounted for in such procedure. Each service graph needs to replicate the functional char-29
acteristics of the modelled service, be it private, public transport, shared or on-demand service.30
Furthermore, each graph, and the TDMG as a whole, needs to satisfy multi-attribute measuring31
requirements by modelling static and dynamic trip attributes that affect MaaS users’ choices. In32
fact, the dynamism of services’ travel time and cost attributes may result to non-FIFO and cost-33
inconsistent graphs (21), where traditional Dijkstra-based approaches can not generate optimal34
solutions (16). Finally, the MaaS graph needs to satisfy the connectivity requirement. Connecting35
service graphs with the walk graph needs to based on data that allows real transfer nodes mapping36
(station entrances, access segments, etc.).37

Due to the functional and structural particularities of each service type in MaaS systems,38
different graph types can be utilised for MaaS path computations. Without loss of generality, the39
following four categories of graphs are adopted:40

1. prime-based graphs GP, used for modelling walking;41
2. schedule-based graphs GS, used for modelling schedule-based mobility services, such42

as public transport;43
3. zone-based graphs GZ , used for modelling services where travellers are passengers, i.e.44
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third-party routing (e.g., traditional taxis and single or pooled on-demand services);1
4. dual-based graphs GD, used for modelling services where travellers are responsible2

for the route choices along the infrastructure (e.g., car-sharing, bike-sharing, private3
vehicle).4
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FIGURE 1: Example of the TDMG’s structure

Network Model Formulation5
Let G = (V,E,T ) = GP ∪GS ∪GZ ∪GD be the directed time-dependent multi-layer graph that6
integrates the graph categories above, where V is the set of nodes, E the set of edges and T =7
{t0, t0+∆t, . . . , t0+(|T |−1)∆t} the time horizon of interest discretised into time intervals ∆t (Fig-8
ure 1). The structure of graph G enables modelling several trip attributes, including in-vehicle9
travel times, walking times, waiting times, distances, monetary costs and number of trip legs.10
However, here and without loss of generality, we rely on three significant attributes that impact11
users’ trip choices in a multimodal context: the total travel time, the trip’s monetary cost and the12
number of trip legs within a journey. It should be noted that we consider public transport transfers13
as an extra trip leg. The above attributes are, ultimately, used as the optimization criteria of the14
problem’s formulation as defined below. The travel time and monetary cost attributes are given by15
the time-dependent functions τe(t) and ce(t) respectively, which indicate the non-negative travel16
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time and cost of an edge e when departing from the edge’s head node at time t. Furthermore, depar-1
tures from V may take place at all discrete time intervals t ∈ T , meaning that no waiting at nodes2
is allowed. Since waiting at a train platform, a bus stop or for a taxi pick-up is, in fact, a realistic3
behaviour and should be replicated in a realistic network model, the proposed graph formulation4
tackles this issue by incorporating such waiting times in the time-dependent travel time attribute of5
each edge. Finally, the number of trip legs, defined as ne for each edge e ∈ E, is a static attribute6
since its value does not vary in time.7

Prime-based Graph8
To represent walking trips, a traditional directed static prime-based graph GP =

(
V P,EP,T

)
is9

adopted (red graph in Figure 1), where walk nodes vp ∈ V P are link intersections and connection10
points to other modes (service infrastructure), while walk edges ep ∈ EP are the directed walking11
links between sequential walk nodes. The travel times of the walk graph are assumed static and12
constant for all time intervals t ∈ T . As such, the travel time of a walk edge is defined as τep(t) =13
lep/vw− (lep/vw mod ∆t),∀t ∈ T , where lep is the distance of a walk edge ep ∈ EP and vw an14
average walking speed. The cost and trip number attribute has zero values for all edges, i.e.,15
ce(t) = 0,∀t ∈ T and ne = 0.16

Schedule-based Graph17
Schedule-based transportation systems are described by their timetable information, defined as a18
3-tuple (X ,B,C), where X is a set of vehicles, B is a set of stops and C is a set of elementary con-19
nections, whose elements are 5-tuples of the form c = (x,bd,ba, td, ta). An elementary connection20
c represents a trip of a vehicle x ∈ X , departing from stop bd ∈ B at time td and arriving at stop21
ba ∈ B at time ta. This schedule-based network is thus represented as a time-dependent graph.22
Here, the schedule-based service model is formulated as a realistic directed and time-dependent23
graph with constant transfer times GS = (V S,ES) (22) (green graph in Figure 1). This model has24
been preferred over time-expanded formulations because i) expanding schedule-based networks25
result to much larger network sizes and computation times for construction and path computation26
(11, 22) and ii) schedule-based model formulations for MaaS systems needs to complement its27
inherent dynamic nature, where timetables are being updated with potential delays (be it negative28
or positive) and cancellations information. Time-dependent graphs enable updating edge’s travel29
time attributes, without having to reconstruct or modify a time-expanded network, which would be30
inefficient.31

The time-dependent graph GS = (V S,ES,T ) consists of two sets of nodes. Let V B ∈V S be32
the set of stop nodes, corresponding to physical stops such as bus stops or train stations. A stop33
node vb ∈V B might be served by at least one route. Allowing transfers between different routes in34
the same stop requires the modelling of virtual route nodes, which do not necessarily represent a35
physical infrastructure. A route r ∈ R is composed of a subset X r of public transport vehicles, such36
that each xr ∈ X r follows the exact same sequence of public transport stops. Therefore, for each37
stop node vb visited by vehicles in X r, a new route node set V Rvb for each vb ∈V B of r is generated.38
Hence, if a stop node vb is served by n public transport routes, then V Rvb = vr1

vb
, . . . ,vrn

vb
. The39

set of all route nodes is defined as V R = ∪vb∈V BV Rvb . Consequently, the set of nodes V S of the40
time-dependent graph GS is defined as V S =V B∪V R.41

The proposed time-dependent graph representation includes also two types of edges, i.e.,42
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route edges and transfer edges. Let EA be a subset denoting route edges between route nodes1
of the same public transport route r, EF the subset of transfer edges from stop nodes vb to their2
corresponding route nodes vrvb

, and EN the subset of transfer edges from route nodes vrvb
to their3

corresponding stop nodes vb. Then, ES = EA∪EF ∪EN .4
The travel time attributes of an edge es ∈ ES represent: i) the waiting or in-vehicle travel5

time for boarding and travelling in a public transport vehicle x and ii) the constant (by assumption)6
time required to complete a transfer from one route to another within the same public transport7
stop. The calculation of travel time for each route edge ea ∈ EA requires the computation of both8
the waiting time and in-vehicle travel time attributes for all possible departure times t ∈ T . In (11),9
the authors presented a formula for computing the waiting times in transit systems where vehicle10
departure times are scheduled with a constant frequency. Since this might not always be the case,11
a binary search algorithm has been used to identify the earliest possible departure time interval12
t∗d,ea

(t) and the corresponding vehicle x∗ea
(t) ∈ X for each route edge ea ∈ EA and departure time13

interval t ∈ T . The in-vehicle travel time of a route edge will therefore be equal to the difference14
between the departure times (intervals) of the vehicle x∗ea

(t)∈ X from the head node of edge ea and15
its tail node. The travel time attributes for all edges es ∈ ES are as follows:16

τe(t) :=

 tw
ea
(t)+ t iv

ea
(t), ∀t ∈ T, ∀ea ∈ EA

gvb , ∀t ∈ T and ∀e f ∈ EF

0, ∀t ∈ T and ∀en ∈ EN
(1)

where tw
ea
(t) := (t∗d,ea

(t)− t) mod ∆t is the least possible discretised waiting time, t iv
ea
(t) := (t

x∗ea(t)
d,v −17

t
x∗ea(t)
d,u ) mod ∆t is discretized travel time corresponding to the next departing vehicle from edge18

ea = (u,v) and gvb is a constant discretised transfer time.19
Modelling monetary cost attributes for public transport services in MaaS is, in fact, a quite20

challenging task, mainly due to the complex fare scheme particularities and the, still, uncertain21
contractual arrangements between MaaS Operators and public transport service providers (costs22
for purchasing and selling trips). In (23), the authors discuss the issues that arise in modelling23
different types of fares and conclude that besides distance-based fares with sub-additive properties,24
modelling other types of fares is far more complex. In this paper, we consider and formulate the25
monetary cost function for the case of dynamic distance-based fare schemes with sub-additive26
properties, while we will investigate other options in future research. The monetary cost attribute27
ce(t) of an edge es ∈ ES at time t is defined as follows:28

ce(t) :=

 c
′
(t)∗ lea, ∀t ∈ T and ∀ea ∈ EA

0, ∀t ∈ T and ∀e f ∈ EF

0, ∀t ∈ T and ∀en ∈ EN
(2)

where c
′
(t) represents the dynamic cost value per km (peak and off-peak distance-based fares).29

Accounting for potential transfers between routes of the same stop, we consider inter-30
changing from one route to another as an extra trip. As such, we assign to the trip leg number31
attribute of each transfer edge e f ∈ EF the value of 1, i.e., ne = 1. For all other edge types, ne = 0.32
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Zone-based Graph1
MaaS systems integrate service offerings from different traditional taxi and Transportation Net-2
work Companies, into their trip recommendation systems. However, the MaaS Operator is not3
responsible for the assignment of a vehicle to a trip request or suggesting a route to the potential4
designated driver. Planning a trip with such services may, thus, rely on aggregated spatio-temporal5
network representations, such as zone-based models (24), and averaged trip attribute estimates.6
The graph type we adopted to represent on-demand services is, therefore, a zone-based graph (yel-7
low graph in Figure 1), which represents taxi and other on-demand service trips between zones.8

Let GZ = (V Z,EZ,T ) be a directed time-dependent zone-based graph and Z the set of9
zones defined by a taxi or on-demand service provider. For each zone z ∈ Z two types of nodes10
are defined; an inbound node vi

z and an outbound node vo
z . The set of inbound nodes V I ⊂ V Z is11

defined as V I = ∪z∈Zvi
z and the set of outbound nodes V O ⊂ V Z is defined as V O = ∪z∈Zvo

z . An12
inbound node vi

z ∈ V I represents the origin of a trip from zone z and an outbound node vo
z ∈ V O13

represents the destination/termination of a trip at zone z. Consequently, the set of nodes V Z of14
the time-dependent graph GZ is defined as V Z = V I ∪V O. Furthermore, each inbound node vi

z is15
further connected with all other outbound nodes via trip edges ez = (vi

z,v
o
z ) ∈ EZ .16

As with schedule-based graphs, the travel time of an edge ez ∈ EZ represents the expected
waiting time to be picked-up by an on-demand vehicle and the expected in-vehicle travel time for
travelling between zones. The discretized travel time attribute τe(t) of an edge ez ∈ EZ for each
potential departure time t ∈ T is defined as follows:

τe(t) := tw
vz j
(t)+t iv

vi
z j
,vo

zk
(t+tw(t)), ∀t ∈ T and ∀ez ∈ EZ and ∀z j ∈ Z and ∀zk ∈ Z (3)

where tw
vz j
(t) is the discretised waiting time to be picked-up by an on-demand vehicle from zone z j17

at time t ∈ T and t iv
vi

z j
,vo

zk
(t + tw(t)) is the discretised travel time to travel from zone z j ∈ Z to zone18

zk ∈ Z at customer pick-up time.19
The monetary cost attribute ce(t) of a trip edge ez ∈ EZ depends on the on-demand service20

provider’s pricing policy and the contractual agreements between the MaaS operator and the ser-21
vice provider. In this work, without loss of generality, we adopt a generic cost formulation which22
is defined as follows:23

ce(t) := cc + cd ∗ lez + ct ∗ τez(t), ∀t ∈ T and ∀ez ∈ EZ (4)

where cc is a constant fee for booking a taxi or on-demand taxi trip, cl is the cost per units of24
distance (e.g. $/km) and ct is the cost per units of time (e.g. $/hour). Finally, the trip number25
attribute has zero value for all edges ez ∈ EZ .26

Dual-based Graph27
Modelling service like car-sharing and bike-sharing, where driving is expected from the end-users,28
requires generating detailed route recommendations. For journey planning in road networks, stud-29
ies in the literature indicate that efficient ways to model realistic networks and, thus, turning re-30
strictions, are either by imposing turning penalties (11) or working with directed dual graph trans-31
formations ((25), (26)). In this work, we adopt and extend dual graph transformation approaches32
to model shared service graphs.33



Yfantis, Chaniotakis, Pérez Domínguez, Rasmussen, Kamargianni, Lima Azevedo 10

Let GP = (V P,EP,T ) be an original (prime) road digraph representing the nodes (intersec-1
tions) and edges (links) of the road infrastructure and the 3-tuple (up,vp,wp) indicate an allowed2
turning (or flow) from a link (up,vp) ∈ EP to a link (vp,wp) ∈ EP. We define GD = (V D,ED) as3
the time-dependent dual graph or the transformation of a prime road graph GP = (V P,EP). Four4
sets of nodes are defined:5

1. Let V Q be the set of station nodes representing car-sharing or bike-sharing stations, capq6
and occq(t) being a station’s capacity and occupancy respectively7

2. Let V H be the set of dual nodes corresponding to the edges of the original road graph8
GD, i.e., vh = ep, with vh ∈V H ∧ ep ∈ EP,9

3. Let V O be the set of the origin dummy nodes vvp
o , representing the initiation of a trip10

from an upstream prime node up11
4. Let VU be the set of the destination dummy nodes vvp

u , representing the termination of a12
trip to a downstream prime node vp13

Consequently, the set of nodes V D can be defined as V D =V Q∪V H ∪V O∪VU .14
The dual graph further consists of five sets of edges. First, let Eϒ be the set of dual edges15

connecting two successive dual nodes and representing the allowed turnings/traffic movements.16
Then, EL is defined as the set of virtual origin dummy edges which are used to create the connection17
between an origin dummy node and its corresponding dual node, while set EΩ consists of the18
virtual destination dummy edges, which connect a dual node and the corresponding destination19
dummy node. Furthermore, we assume that each station q ∈ Q is mapped through the functions20
access(·) and egress(·) to entrance and exit nodes from the original graph. Then, let EEX be the set21
that includes the station egress links between a station node vq ∈V Q and its corresponding origin22
dummy node vvp

o ∈ V O with vvp
o = egress(q), while EEN be the set that includes station access23

links between destination dummy nodes and their corresponding stations q, i.e., vvp
u ∈ VU with24

vvp
u = access(q). Consequently, the set of edges ED is defined as ED = Eϒ∪EL∪EΩ∪EEX ∪EEN .25

The travel time of an edge ed ∈ ED represents both the average waiting time to pick-up26
or drop-off (park) a shared vehicle from and to a station, as well as the in-vehicle travel time for27
travelling along an edge. The discretized travel time attribute τe(t) of an edge ed ∈ ED for each28
potential departure time t ∈ T is defined as follows:29

τe(t) :=


t iv
eυ
(t), ∀t ∈ T and ∀eυ ∈ Eϒ

t iv
eω
(t), ∀t ∈ T and ∀eω ∈ EΩ

0, ∀t ∈ T and ∀el ∈ EL

tw
eex
(t)+ t iv

eex
(t + tw

eex
(t), ∀t ∈ T and ∀eex ∈ EEX

tw
een
(t)+ t iv

een
(t + tw

een
(t)), ∀t ∈ T and ∀een ∈ EEN

(5)

Furthemore, for shared services, we adopt a similar generic cost formulation as with the30
case of on-demand services at Equation (4). The trip leg number attribute values are zero for all31
edges ed ∈ ED, i.e., ne = 0,∀ed ∈ ED.32

Time-dependent Multi-layer Graph33
The integration of graphs in G can be realized via creating connections, i.e., virtual transfer edges,34
between service graphs and nodes of the walk graph (red dashed edges in Figure 1). In the context35
of the proposed modelling approach, there are two ways to implement this. The integration of the36
walk graph with schedule-based and dual-based graphs can be realized by connecting walk graph37
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nodes that represent physical service infrastructure points (e.g. train stations, bus stops, carshar-1
ing/bikesharing stations) with their corresponding infrastructure nodes of the service graphs and2
vice versa. Furthermore, the integration of the walk graph with zone-based graphs is enabled by3
mapping each walk graph node to its corresponding zone, as defined by a taxi or on-demand service4
provider. The mapping process enables the connection of all walk nodes with their corresponding5
zone nodes in the zone-based graphs and vice versa.6

Let ET R be the set that includes the virtual transfer edges described above. Since such7
edges represent only service transitions, both travel time and cost attributes are equal to zero. On8
the contrary, transfer edges indicate initiation of a new trip leg and, therefore, ne = 1. For con-9
nections between the walk graph and the public transport service graphs the trip number attribute10
is equal to zero. This is attributed to the fact that we already count for new public transport trip11
initiations within the transfer edges of the schedule-based graphs. The proposed TDMG can, there-12
fore, be defined as a directed and dynamic graph G = (V,E,T ), where V =V P∪V S∪V Z ∪V D and13
E = EP∪ES∪EZ ∪ED∪ET R.14

2.2 Dynamic Multimodal and Multicriteria Shortest Path: Problem Definition and Formula-15
tion16
The optimal MaaS trip planning problem is a dynamic multimodal and multi-criteria shortest path17
problem, which can be defined as a 6-tuple Ψ = (G,vor,vds, tr, th,K), where G = (V,E,T ) is the18
TDMG, vor ∈ V is the origin node, vds ∈ V is the destination node, tr ∈ T is the request time19
interval, th ∈ T is the time horizon and K is the set of optimization criteria. In fact, Ψ can be20
perceived as a dynamic and multi-riteria all-to-one shortest path problem (DMASPP), where the21
solution space of Ψ is a subset of the DMASPP’s solution space. The solution of the DMASPP is22
the full (maximal) Pareto set, i.e. the set of all non-dominated paths, for all nodes v ∈ V and for23
all time intervals t ∈ T to the destination node vds ∈ V and is based on a backwards multi-criteria24
variant of Bellman’s optimality principle (27), as defined below.25

Let Πvt and Π∗vt ⊆ Πvt be the set of all feasible paths and the maximal Pareto set of non-
dominated paths, respectively, for each node v ∈ V and time t ∈ T to the destination node vds ∈
V . A path πv(t) from a node v ∈ V and time t ∈ T to the destination node vds ∈ V is denoted
by a sequence of nodes and departure times πv(t) = {(v1 = v, t1 = t), ...,(v|πv(t)| = vds, t|πv(t)| =
ta)}, ∀v ∈ V, and ∀t ∈ T , where |πv(t)| is the number of nodes in path πv(t), ta ∈ T and
ta ≤ t0+(|T |−1)∆t. Each path is associated with a cost label vector

−→
λ v(t) ∈ Λvt , where Λvt is the

set of label vectors for the path πv(t)∈Πvt , i.e., |Λvt |= |Πvt |. Label vectors
−→
λ v(t) indicate the cost

of the path in the K-dimensional cost space and is defined as
−→
λ v(t) =

(
λ 1

v (t), ...,λ
|K|
v (t)

)
, where

|K| denotes the number of optimization criteria. Intuitively, a label λ k
v (t) represents the attribute

value k ∈ K for path πv(t). Let us assume that this attribute is the total travel time. Then, the travel
time label λ τ

v (t) for a path πv(t) is defined as:

λ
τ
v (t) :=

{
τe(t)+λ τ

u
(
t + τe(t)

)
, ∀v ∈V \{vds}, and ∀t ∈ T
0, v = vds

(6)

,where e = (v,u) ∈ E. The necessary and sufficient condition for the Pareto set computation is the
following:

Π
∗
vt = {πv(t)

∣∣ @π
′
v(t) ∈Πvt \{πv(t)} :

−→
λ
′
v(t)≺

−→
λ v(t)} (7)
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with boundary condition:

λ
k
v (t) = 0, ∀t ∈ T, ∀k ∈ K, v = vds (8)

The optimality equation (7)-(8) indicates that the Pareto set of each node v ∈ V and time
interval t ∈ T is composed only of non-dominated paths, i.e., there is no other path whose label
vector is dominant. Furthermore, the boundary condition indicates that the label vector for the
destination node vds ∈V is initiated with zero values. The dominance condition between two label
vectors is denoted as:

−→
λ v(t)≺

−→
λ
′
v(t)⇔ (∀k ∈ K : λ

k
v (t)≤ λ

′k
v (t)∧ (∃k ∈ K : λ

k
v (t)< λ

′k
v (t) (9)

or otherwise, a label vector
−→
λ v(t) dominates a label vector

−→
λ ′v(t) if and only if all attributes of the1

former are less or equal than the ones of the latter and the strict inequality holds at least for one of2
the attributes of the former.3

2.3 Dynamic Multicriteria Label Correcting Algorithm4
The proposed algorithm is based on the dynamic programming paradigm and constitutes a special-5
ized multicriteria version of the unicriteria label correcting algorithm, presented initially by (28)6
and (11). The algorithm starts from the destination node vds ∈ V and solves the optimality condi-7
tion of Equation 7 in an iterative fashion. At each iteration, Pareto paths of a candidate node v ∈V8
with the potential to generate new non-dominated paths are expanded further with their predeces-9
sors v

′ ∈ Γ−1(v) for each possible departure time t ∈ T from v
′
. For each new path and for each10

time t ∈ T , a new label is compared with existing Pareto labels of node v
′
at time t ∈ T , according11

to the dominance condition of Equation 9. If the evaluation indicates that the new path is non-12
dominated, then the new label is added to the Pareto set of node v

′
at t. If the new label dominates13

existing Pareto labels, then these removed. The new node v
′
is, therefore, a node with the potential14

to generate new non-dominated labels and, as such, his labels need be extended backwards in fu-15
ture iterations. All such nodes are added (and extracted) to (from) a "scan eligible" (SE) list. The16
list in the proposed algorithm is a Deque structure, or else double-ended queue, as indicated by17
(28) for greater efficiency. The proposed algorithm operates under the assumption that no waiting18
is allowed at any intermediate nodes since waiting has been incorporated in the problem’s graph’s19
edges.20

The pseudocode of the proposed algorithm is illustrated in Algorithm 1. The algorithm is21
based on two main data structures. First, a Bag structure is used to store the Pareto set of labels22
for each node v ∈V and time t ∈ T in the form of tuples. Each tuple incorporates the Pareto label23
of a path that starts from a node v at time t to the destination node vds, the successor node, the24
successor time interval and the successor label. The second data structure, i.e., LabelsToExtend25
incorporates the cost labels of a node v and time t that need to be extended in each iteration of the26
algorithm. This structure enables us to avoid extending labels that have already been extended in a27
previous iterations (a node may be visited multiple times). The initialization of the data structures28
takes places in Lines 2-6. Both structures are initialized with a zero cost label for the destination29
node and for all time intervals.30

Lines 7 and 8 initialize the SE list, or Deque structure, with the destination node vds. All31
queue operations are described by Ziliaskopoulos and Mahmassani (28). The algorithm runs as32
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long as Q includes nodes that can produce new non-dominated paths. In each iteration, the algo-1
rithm examines the predecessor nodes v′ of a node v only if the edge (v′,v) can be traversed within2
the pre-defined time horizon th for each time t. To compute the full Pareto set, the time horizon3
needs to be at least equal to the walking time from origin to destination. For each node v′ and4
departure time t, new labels are created by extending the current Pareto labels of node v at the time5
of arrival and only if this cost label is in the LabelsToExtend structure for the corresponding node6
and arrival time.7

The Heuristic.skipLabel function in Line 21 is a function that prevents the computation of8
unrealistic paths. The application of the algorithm for the TDMG without heuristically preventing9
certain path extensions results to Pareto paths with unrealistic service sequences, taxi trips with10
unnecessary walking before pick-up or even loops due to the time-dependency. It should be noted,11
that preventing label extensions may result to missing optimal paths due to issues with backtracking12
labels that have been discarded from a potentially unrealistic optimal label.13

The dominance check between a new cost label λv′(t) and existing Pareto labels of node v′14
at t takes place in Lines 25-29. If the new label is not dominated by any current Pareto label it is15
added to the data structures and potentially dominated labels are discarded. If a new label is added16
to the Bag structure for any node v′ and time t, node v′ is added to the SE list Q. Finally, once all17
predeccessors of a node v have been examined, all labels of node v for all times t are discarded18
from the LabelsToExtend structure.19

Algorithm 1 Dynamic Multi-criteria Label Correcting Algorithm20

Input: Ψ21
Output: Full Pareto set of Labels22

1: function DMLC(Input)23
2: λvds(t) = (0, ...,0), ∀t ∈ T24
3: Bag(v, t)← /0, ∀v ∈V \{vds} and ∀t ∈ T25
4: Bag(vds, t).add((λvds(t)),Null), ∀t ∈ T26
5: LabelsToExtend(v, t)← /0, ∀v ∈V \{vds} and ∀t ∈ T27
6: LabelsToExtend(vds, t).add(λvds(t)), ∀t ∈ T28
7: create(Q)29
8: Q.insert(vds)30
9: while Q 6= /0 do31

10: v← Q.pop()32
11: for v′ ∈ Γ−1(v) do33
12: insertInQ← False34
13: for t ∈ T do35
14: if t + τv′v(t)≤ t0 +(|T |−1)∆t then36
15: for label in Bag(v, t + τv′v(t)) do37
16: currentLabel← label38
17: λv(t + τv′v(t)← currentLabel.getCostLabel39
18: if λv(t + τv′v(t) not in LabelsToExtend(v, t + τv′v(t)) then40
19: continue41
20: end if42
21: if HeuristicSkipLabel() then43
22: continue44
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23: end if1
24: λ ′v′(t)← sum(costv′v(t),λv(t + τv′v(t))2
25: delLabels← /03
26: for label in Bag(v′, t) do4
27: λv′(t)← label.getCostLabel5
28: nonDominated,delLabels← checkDominance(λv′(t),λ ′v′(t),delLabels)6
29: end for7
30: if nonDominated then8
31: insertInQ← True9
32: if delLabels 6= /0 then10
33: for label in delLabels do11
34: Bag(v′, t).delete(label)12
35: LabelsToExtend(v′, t).delete(label)13
36: end for14
37: end if15
38: newLabel← (λ ′v′(t),(v, t + τv′v(t),λv(t + τv′v(t)))16
39: Bag(v′, t).add(newLabel)17
40: LabelsToExtend(v′, t).add(λ ′v′(t))18
41: end if19
42: end for20
43: end if21
44: end for22
45: if insertInQ then23
46: Q.insert(u)24
47: end if25
48: end for26
49: LabelsToExtend(v, t)← /0, ∀t ∈ T27
50: end while28
51: return Bag(vds, tr)29
52: end function30

2.4 Speed-up Heuristics31
A significant drawback of the DMLC algorithm is that is not computationally efficient, even with32
the Heuristic.skipLabel function. Therefore, further heuristic approaches are investigated and ap-33
plied that speed up the algorithms execution and approximate the paths of the full Pareto set.34
Below we describe three speed-up heuristics that have been already investigated in the literature35
for multi-criteria applications (12, 29).36

1. Ratio-based Pruning: The ratio-based heuristic is a temporal heuristic that prunes the37
search space by reducing the time horizon of the algorithm and the number of Pareto38
labels.To ensure computation of the fastest paths and avoid the computation of paths39
with excessive duration, we provide as input to the algorithm a time horizon that can be40
defined as th = tmin+α ∗tmin−max(tmin+α ∗tmin−tmax). The formula indicates that we41
consider as a time horizon (α +1) minimum travel times. If it surpasses the maximum42
travel time, the difference is subtracted and the time horizon is equal to the maximum43
walking time.44
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2. ε-Dominance: Based on the concept of weak dominance, this heuristic reduces the1
number of Pareto labels pushed through the graph. The heuristic indicates that any2
newly computed label λ ′v′(t) will be dominated by an existing Pareto optimal label λv′(t)3
if λv′(t)≺ (1+ ε)λ ′v′(t). In a similar fashion, an existing Pareto label is dominated and4
discarded if λ ′v′(t)≺ (1+ ε)λv′(t).5

3. Buckets: The main notion behind the Buckets heuristic is that the cost space, i.e, one or6
all the attributes k ∈ K, is discretised into value intervals, or else buckets. The Bucket7
value of a real cost label vector λv(t) can be defined as: bucketValue(λv(t)) = (λ 1

v (t)−8

(λ 1
v (t) mod BucketSize), ...,λ |K|v (t)− (λ

|K|
v (t) mod BucketSize)).9

3. MAAS NETWORK MODEL AND DMLC ALGORITHM EVALUATION10
In this section, we present the application of the proposed network modelling and algorithmic11
framework for a prototypical city. The main purpose of the experimental evaluation is to verify12
that the proposed network model enables the generation of multimodal paths with diverse and13
reasonable mode combinations, test the computational performance of the algorithms and compare14
the quality of the heuristic Pareto sets.15

3.1 Network Construction16
The proposed method is being integrated within a simulation environment as part of the MaaS17
Integration Controller (4). As such, we test it for a virtual multimodal network, which is available18
with the open-source SimMobility simulation software (30). Illustrated in Figure 2, the network19
at stake, designated henceforth as Virtual City, is composed of: (a) a road network with 95 nodes20
(intersections), 286 segments (road sections with homogeneous geometry) and 254 links (groups21
of one or more segments, edged by intersections), (b) 10 bus lines, spanning the region with 79 bus22
stops, (c) 4 metro lines with a total of 8 metro stations and 20 platforms, (d) 24 Traffic Analysis23
Zones (TAZs), used here in the definition of zone-to-zone operational performance for taxi and on-24
demand mobility service operations, (e) a walk network with the same configuration as the road25
network, and (f) 8 carsharing stations with parking capacity equal to 50 vehicles each.26

A 24-hour SimMobility simulation, as in (31), has been conducted to extract traffic and ser-27
vice data, including the following services: i) Bus, ii) Underground/Metro, iii) Taxi, iv) on-demand28
e-hailing, v) on-demand ride-sharing and vi) a station-based carsharing service. One mobility ser-29
vice provider for each on-demand or shared services has been assumed. Simulation outputs were30
used for generating the service graphs’ attributes. Simulation outputs include: i) timetables for31
public transport services, ii) road network travel times for 5-minute intervals, and iii) service travel32
and waiting times for 5-minute intervals. For taxi and on-demand services, we aggregated zone-to-33
zone trips and extracted average zone-to-zone travel and waiting times for each service and each34
5-min interval. For carsharing, we used the simulated 5-min interval road network travel times and35
generated random station stock levels based on normal distributions for peak and off-peak periods.36
The discretization time interval ∆t for the TDMG and its time attributes is equal to 30 seconds. For37
the monetary cost attributes, the service cost units have been inferred from existing public transport38
(32), taxi (33), on-demand1 and shared2 services. The size of the resulted TDMG and its service39
graphs are shown in Table 1.40

1https://www.uber.com/us/en/price-estimate/
2https://greenmobility.com/dk/en/pricing/
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FIGURE 2: Virtual City Network Overview

Mode Nodes Edges

Walk 97 259
Bus 219 408

Train 28 56
Taxi 48 576

Single On-demand 48 576
Shared On-demand 48 576

Car-sharing 278 587

TDMG 766 4004

TABLE 1: Size of the Virtual City’s TDMG

3.2 Experiment Settings1
To test the full Pareto set, we applied the DMLC algorithm for 100 origin-destination (OD) pairs2
with time horizons equal to the walking time required to travel from origin to destination. The3
ODs have been randomly selected from a pool of trips that represent the demand between areas4
with households and business establishments3, while we only consider ODs with walking time5
more than 30 minutes. The departure times of the requests were at peak time. The application of6
the heuristics and their combinations have been tested for the same ODs. While several heuristic7
configuration parameters have been tested, we present the results for the parameters that generated8
good ratios between our algorithms’ evaluation metrics (see Section 3.3 Results). The selected9

3https://github.com/smart-fm/simmobility-prod/wiki/Demo-Data
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configuration parameters are: α = 3, ε = 0.05 and the bucket is (60,5,1). For lower time horizon1
values and higher epsilon and bucket parameters, the algorithms’ runtimes would be quite lower,2
ranging from milliseconds to a second, but at the expense of a small number of paths.3

The results obtained in the experimental evaluation section are based on running the pro-4
posed algorithms on a 2.2GHz Intel(R) Core(TM) i3-8130U processor with 4GB RAM running5
Windows. The prototypical MaaS Network model and the algorithms are implemented in Python6
3.7 using and extending the NetworkX 2.3 library. The source code for the network model and the7
algorithms can be found in an open repository4.8

The evaluation of the DMLC algorithm and its heuristric variations is based on two eval-9
uation metric types, i.e., speed and quality. For the algorithms’ speed, we compute average CPU10
runtimes, µrun, in seconds along with its standard deviation σrun. Since a multi-criteria optimisa-11
tion problem’s solution’s quality cannot be defined in terms of closeness to an optimal solution, we12
use quality metrics that indicate the closeness of a heuristic Pareto set to the full Pareto set, as in13
(29). The quality metrics are:14

• The average number of routes |Π∗| in the Pareto set with its standard deviation σ|Π∗|15
• the average percentage of heuristic Pareto routes Π% that are also included in the full16

Pareto set17
• the average euclidean distance de(Π

∗,Π) of the heuristic Pareto set from the optimal
Pareto set in the cost space. The distance de(π

∗,π) between a path of the full Pareto set
and a path of the heuristic Pareto set is the Euclidean distance in the k-dimensional space
of criteria values normalized to the [0,1] range, and is defined as:

de(Π
∗,Π) :=

1
|Π∗| ∑

π∗∈Π∗
min
π∈Π

de(π
∗,π) (10)

• the average Jaccard distance d j(Π
∗,Π) of the heuristic Pareto set from the optimal Pareto

set in the physical space. The Jaccard distance d j(π
∗,π) (34) indicates the dissimilarity

between routes and is defined as:

d j(π
∗,π) :=

|π∗∪π|− |π∗∩π|
|π∗∪π|

(11)

d j(Π
∗,Π) :=

1
|Π∗| ∑

π∗∈Π∗
min
π∈Π

d j(π
∗,π) (12)

• the average percentage of paths Π
f
% that have been failed to be extracted given the heuris-18

tic.SkipLabel function defined in 1 and its standard deviation σ
Π

f
%

. This metric calculates19

the percentage of paths that were missed as compared to the size of the expected Pareto20
set.21

3.3 Results22
The evaluation results are summarized in Table 2. Using the DMLC algorithm as the benchmark for23
the evaluation of the DMLC-heuristics’ speed and quality, all the evaluation metrics are computed24

4https://github.com/LamprosYfantis/MaaS_VC_Network_Model
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with respect to the full Pareto set Π∗ generated by it. As shown, the full Pareto set includes on1
average about 15 optimal paths at the expense of about 40 second runtimes. The average time2
horizon for all the ODs is about 1.5 hours with a standard deviation of about 40 minutes. The3
relatively low number of optimal paths and average runtimes, is mainly because the Virtual city,4
while realistic, is relatively small and only few of the selected queries have origins and destinations5
at marginal points in the network.6

Algorithm µrun σrun |Π∗| σ|Π∗| de d j Π% Π
f
% σΠ

f
%

DMLC 40.988 95.384 15.515. 11.036 - - 100 0.23 1.129
DMLC-R 6.556 6.972 8.475 4.662 0.32 0.209 100 0.212 2.132
DMLC-E 16.991 26.396 9.643 4.09 0.059 0.12 97.91 1.719 4.699
DMLC-B 17.11 26.557 9 3.72 0.07 0.133 97.9 1.085 3.79

DMLC-R-E 4.427 3.936 6.267 2.561 0.355 0.279 98.71 0.84 3.885
DMLC-R-B 4.534 4.054 5.99 2.368 0.361 0.29 98.05 0.654 2.987

TABLE 2: Evaluation of DMLC and heuristic algorithms’ performance for the Virtual City appli-
cation; Speed evaluation metrics are in seconds

All heuristics and their combinations are, as expected, faster than the DMLC algorithm7
generating results within a few seconds. The DMLC-R (ratio-based heuristic) performs best in8
terms of the optimality ratio of the resulted paths and the percentage of missed paths. All resulted9
paths are optimal and exist in the full Pareto set, while only 0.2% of the expected Pareto is missed10
on average. Furthermore, it produces almost half the paths that the DMLC algorithm does and is11
almost 6 times faster, rendering it suitable to be used in combination with other heuristics. The12
distance de(Π

∗,Π) is equal to 0.32, which can be translated into a 19.2% optimality loss. This13
is attributed to the fact that the heuristic Pareto has almost half the size of the full Pareto set.The14
average time horizons for the ratio-based heuristic(s) is equal to 2827 seconds with a standard15
deviation of 884 seconds.16

For the dominance relaxation heuristics in our context, the ε-Dominance-based ones, i.e.,17
DMLC-E and DMLC-R-E, seem to slightly dominate the Bucket-based ones, i.e., DMLC-B and18
DMLC-R-B respectively, in terms of speed and quality. As such, we describe below the results19
of the non-dominated solutions. The DMLC-E heuristic generates almost 9.6 paths in about 1720
seconds with only a minor quality loss, equal to de(Π

∗,Π) = 0.12 or else 7.2% optimality loss.21
Over 97% of the paths in the heuristic Pareto set Π are in the full Pareto set Π∗. Combining the ε-22
Dominance technique with a heuristically reduced time horizon is the fastest from all 6 algorithms.23
The DMLC-R-E algorithm produced an average of about 6 paths in 4 seconds, while maintaining a24
relatively high quality both in terms of the euclidean set distance de(Π

∗,Π) = 0.355 (21.3% loss)25
and percentage of optimal paths (98.71%) in the heuristic Pareto set. While the ε-Dominance-26
based algorithms dominate the Bucket-based ones in speed and quality, they result to slightly27
higher percentages of missed paths. The high standard deviations, i.e., σ

Π
f
%
= 4.7 and σ

Π
f
%
= 3.9,28

indicate that in some instances a few optimal paths might be missed at the expense of computing29
unrealistic journeys.30

Figure 3 provides insights on the dependency between the time horizon of an OD query31
and the resulted runtime. As illustrated, higher time horizons result to higher algorithm execution32
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FIGURE 3: Runtimes of the DMLC-R-E algorithm in dependency with the
ODs time horizons

times, since larger search space is explored. This can be also inferred from the relatively high1
standard variations of the six algorithms of Table 2. This indicates that for larger networks, the2
performance of the algorithms might deteriorate significantly. In such a case, the parameter val-3
ues for the proposed (or other) heuristics need to be adjusted accordingly towards offering more4
efficient speedups. Furthermore, in a similar fashion with the runtime tendencies and as illustrated5
in Figure 4, the number of optimal Pareto routes also increases notably with the time horizon for6
each OD. In addition to that, another important factor that affects the size of the Pareto set for an7
OD is the network structure, its geometry and the availability of services in the proximity of the8
origin and destination nodes.9

Finally, we have chosen an origin-destination pair of the Virtual City to illustrate the re-10
sulted paths from our most efficient algorithm, i.e., the DMLC-R-E heuristic. It should be noted11
that in the proximity of the origin and destination points, there are public transport stops and car-12
sharing stations. As illustrated in Figure 5, the resulted Pareto set includes 11 non-dominated13
solutions which utilise and combine all the services of our experiment. The first two paths are14
single and shared on-demand service trips, while the third path is a multimodal trip combining a15
shared taxi (first-mile) and the Bus service. The majority of the trips in the Pareto set are based on16
public transport services, i.e Metro and Bus. In fact, almost half the paths in the Pareto set are Bus17
trips with different routes and amount of walking. The last path of the Pareto set is a carsharing18
trip.19

4. CONCLUSIONS AND FUTURE WORK20
Optimal trip planning operations are of vital importance to MaaS Operators. Therefore, MaaS21
travel recommendations need to derive from modelling and optimization processes that capture the22
inherent dynamic, multimodal and multicriteria particularities of MaaS. To address those require-23
ments, in contrast to existing work, we formulated and proposed a new generalized MaaS network24
model and an algorithmic framework for solving the fully dynamic multimodal and multicriteria25
path set generation problem in emerging MaaS systems. The proposed MaaS network model cap-26
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FIGURE 4: Optimal Pareto set sizes of the DMLC algorithm in dependency
with the ODs time horizons

tures the operational and structural dynamics of a wide range of mobility services, enables both1
unimodal and multimodal trip computations and facilitates the modelling of several typical trip2
attributes that affect end-users’ trip choices. In future work, we will further investigate the integra-3
tion of free-floating shared services and their operational particularities in supernetwork models.4

To solve the problem of generating optimal paths for MaaS networks, we formulated and5
proposed a new "heuristic-enabled" dynamic and multicriteria label correcting algorithm. The6
proposed algorithm enables optimal and realistic Pareto set computations for both FIFO and non-7
FIFO graphs with either cost-consistent or cost-inconsistent properties. To evaluate the algorithms’8
computational performance and quality, we performed an experiment for a small-sized but realistic9
Virtual City. We considered three optimization criteria, i.e., the total travel time, the monetary cost10
and the number of trip legs. More optimization criteria will be considered in future research (e.g.11
walking time, distance). The application results indicate that, for the tri-criteria optimization prob-12
lem, the heuristic variants of the DMLC algorithm are capable of producing high quality results13
(optimal Pareto paths) with significantly lower runtimes as compared to the DMLC algorithm. This14
indicates that the proposed method has the potential to be utilised in the context of interactive ap-15
plications, operational settings and route choice set generation processes for multimodal Dynamic16
Traffic Assignment (DTA) models. The performance of the algorithms can be further enhanced17
via the means of i) more computational power, ii) parralel computing, iii) low-level optimization18
of data structures (memory efficient) and the algorithm’s logic and iv) pre-processing and further19
heuristic applications (e.g. weak dominance, constrain walking and taxi travel times). For future20
work, we further plan to apply and evaluate the proposed framework for larger, real-sized networks21
with the above enhancements.22

Finally, an important element of journey planning in MaaS networks is the personalisation23
aspect. Pareto sets may be too large, including paths that are not of interest to end-users. At the24
same time, MaaS users are often provided with the option of bundles (20) which include certain25
service offerings to be consumed, thus reducing the search space for possible alternatives to be26
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FIGURE 5: Resulted Pareto paths example from application of the DMLC-R-
E algorithm

presented to travelers. Second-stage personalization algorithms or direct user-specific objective1
function methods can be explored on top of targeted network modifications using either model-2
based or data-driven techniques.3
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