

HARMONY model suite: an integrated spatial and multimodal transport planning tool to lead a sustainable transition to a new mobility era

Francesca Fermi (TRT)

Spatial and transport planning in metropolitan .x. and urban areas

Metropolitan areas

Greenhouse gas emissions,

energy consumption, pollutant emissions

· accessibility and usage of public transport

Spatial and transport planning in metropolitan and urban areas

Metropolitan areas

 new disruptive mobility services (MaaS, sharing mobility, etc.)

 new technologies (autonomous vehicles, drones, e-scooters, etc.)

→ spatial and transport planning policies and investments

HARMONY project - Vision

HARMONY: Holistic Approach for Providing Spatial & Transport Planning Tools and Evidence to Metropolitan and Regional Authorities to Lead a Sustainable Transition to a New Mobility Era

European project funded by the European Commission within the *Horizon 2020 Framework Research Programme* (www.harmony-h2020.eu)

Duration: June 2019 – November 2022

Develop a new generation of harmonised spatial and multimodal transport planning tools

HARMONY consortium

46: Dissemination & Exploitation

HARMONY concept

A2: Stakeholders & Community Involvement – Selective demonstrations People & Freight

A3: Model Feeding and Data Quality Framework

A4: Integrated Transport & Spatial Planning Tools for Evidence-based decision making

HARMONY model suite

A5: Recommendations for updating Regional Spatial and Transport strategies

Trailblazing

HARMONY Metropolitan Areas' Activities

Finland Estonia ithuania Belarus Bulgaria

Rotterdam

- Electric AV demonstration freight
- HARMONY Model Suite Freight

Oxfordshire

- Electric AV demonstration Passenger & freight
 - Drones demonstration Freight
 - HARMONY Model Suite Passenger

Athens

HARMONY Model Suite - Passenger

Turin

HARMONY Model Suite - Passenger

Trikala

Drones demonstration for medical purposes

GZM

Adopter metropolitan area

Main outcomes

- The HARMONY Model Suite (software)
- AVs and drones demonstrations
- Training material and activities for using the HARMONY Model Suite
- Recommendations for SUMPs update (AVs & drones included)

HARMONY Model Suite (MS)

- New mobility services and technologies → added level of modelling complexity in transport demand and supply models
- Demand model frameworks in activity-based models should be extended with new behaviourally realistic model structures
- Developing a multi-scale, software-agnostic, integrated model system (mainly based on the activity-based approach).
- Enabling end-users
 - to couple/link independent models
 - to analyse regional and urban interventions for both passenger and freight mobility (e.g. policies and capital investments, land-use configurations, economic and sociodemographic assumptions, travel demand management strategies and new mobility service concepts)

HARMONY MS - structure

The **HARMONY MS** integrates new and existing sub-models with a multiscale approach:

- Strategic Level → mainly composed of regional economic, demographic forecasting, land-use, spatial freight interaction and long-term mobility choice models. Long-term horizon (e.g. year-to-year, every 5 years)
- Tactical Level → made of a fully agent-based passenger and freight demand model, representing passenger and freight agents' choices.
 Mid-term horizon (e.g. on a day-to-day level)
- Operational Level → representing the transport supply and demand interactions at high granularity.
 Short-term horizon (e.g. second to second, minute to minute)

HARMONY MS

Strategic level

HARMONY MS Tactical level

HARMONY MS –

operational level

HARMONY project – where we are

- Investigating new mobility services and technologies for passenger and freight
- Review of policy appraisal methods, Sustainable Urban Mobility Plans guidelines and Key Performance Indicators
- Involvement of local stakeholders
- Demonstration with drones in Trikala
- Setting-up demonstrations with autonomous vehicles in Oxfordshire and Rotterdam
- Definition of the concept and technical specification of the HARMONY Model Suite architecture
- On-going development of the models and of a first prototype of the HARMONY Model Suite

Conclusions

- HARMONY MS development
 - Harmonised spatial and multimodal transport planning tool
 - Analysis of regional and urban policies and interventions for both passenger and freight mobility, in the light of new mobility services and technologies
 - Multi-scale, software-agnostic, integrated activity-based model system
 - Flexibility to connect with existing tools and running only part of the HARMONY MS

Project Coordinator
Prof. Maria Kamargianni (UCL)

<u>m.kamargianni@ucl.ac.uk</u>

Francesca Fermi (TRT) <u>fermi@trt.it</u>

